CHAPTER 5

A preliminary, descriptive survey of rhotic and approximant fricativization in Northern Ecuadorian Andean Spanish varieties, Quichua, and Media Lengua

Jesse Stewart
University of Saskatchewan

This chapter examines acoustic data from six speech communities in the northern Andean region of Ecuador to describe variation in the Spanish rhotics /r, ɾ/ and approximants /ʎ, j/, as well as their relationship to the Quichua fricatives /ʐ, ʒ/. Data were collected from four dialects of Spanish, Imbabura Quichua, and Media Lengua, a mixed language containing Spanish lexicon and Quichua morphosyntax. Results from this preliminary, descriptive survey support claims that speakers of both urban and rural dialects of Spanish make extensive use of [ʐ] for /r/ and [ʒ] for /ʎ/, in addition to a wealth of phonetic variation. Similarly, /ɾ/ and /ʎ/ from Spanish borrowings in Media Lengua and Quichua assimilate to [ʐ] and [ʒ], respectively, with little exception.

Keywords: Ecuadorian Spanish, Media Lengua, Quichua, fricativization

1. Introduction

Intense contact between Spanish and Quichua in the Andean region of Ecuador has led to a complex linguistic dynamic in the region. Such conditions have resulted in a continuum of language varieties in which Urban Spanish from Quito (henceforth, Quito Spanish) rests at one end and unified Quichua at the other. In the middle of this continuum, a ‘mixed language’ known as Media Lengua (literally translated as ‘half-language’) formed through various processes of lexification
This chapter provides a preliminary description of Northern Ecuadorian Spanish liquid phonemes (/r, ɾ, ʎ, j/) and their convergence with two fricatives, [ʐ, ʒ] (retroflex and postalveolar, respectively). The Spanish varieties under investigation include: Urban Andean Spanish from Quito and Ibarra; Rural L1 Spanish from the community La Cadena; Rural L2 Spanish (L1 Quichua) from the neighboring communities of Chirihuasi and Cashaloma; and Media Lengua from the community of Pijal. Fricative production in the Quichua spoken in the same communities as Rural L2 Spanish is also investigated to provide a point of comparison.

In addition to providing the first acoustic description of the liquid-fricative shift in the region, this study looks to explore the following question: Is there synchronic evidence that Quichua influences the use of [ʐ] and [ʒ] by Spanish speakers? If so, to what degree? Findings from this study reveal that Spanish speakers (of all dialects under analysis) overwhelmingly produce the /r/ phoneme as [ʐ], and that speakers of Ibarra and L2 Spanish overwhelmingly produce the /ʎ/ phoneme as [ʒ]. Similarly, Quichua and Media Lengua speakers assimilate /r/ and /ʎ/ in Spanish borrowings to the Quichua phonemes /ʐ/ and /ʒ/ (respectively) almost exclusively.

1.1 Andean Spanish

The Andean variety of Spanish spoken in the urban centers of Quito and Ibarra has undergone many phonological, morphosyntactic, and lexical changes as a result of close contact with Quichua. Older generations of both urban and rural Spanish varieties may have a productive or passive knowledge of many of Quichua words and/or compound words, several of which have completely replaced standard Spanish lexemes (e.g., chuchaqui ‘hangover’ instead of resaca). Morphosyntactic borrowings include the extensive use of diminutive calques, interjections, the dar + gerund construction (Bruil, 2008; Hugo Albor, 1973; Murcia-Niño, 1995; Toscano-Mateus, 1953), extensive use of the limitive marker calque nomás, future verbal inflections (Haboud, 1998), and changes to the pronominal system (see Gómez-Rendón, 2005; Muysken, 1980, 1981, 1997; Shappeck, 2011; Stewart, 2011).

1. The transfer of the Spanish lexicon into Media Lengua involved the following processes: relexification (i.e., the transfer of the phonological shell of the lexifier language on to the semantic representation of the systemic language), translexification (i.e., the transfer of 2+ characteristics of the lexifier language into the systemic language, such as the phonological shell and syntactic features; see Muysken, 1981), and possibly adlexification where the lexical item from both languages co-exist (Shappeck, 2011).
Palacios Alcaine, 2005a, 2005b). Rural varieties of Spanish also include changes in word order and discoordinated use of gender and number.

One noticeable phonological shift is the substitution of the palatal lateral approximant (i.e., [ʎ], the standard/ prescriptivist pronunciation of <ll> in Ecuadorian Andean Spanish) with the voiced alveopalatal fricative [ʒ] (e.g., ella [‘e.ʎa] for [‘e.ʎa] ‘she’). This substitution is often described by speakers of Northern Quito Spanish as a quality of Southern Quito speech, but it is also pervasive in the north and in other dialects (explored herein). It should be noted that many highland regions of Latin America, including parts of Colombia, Ecuador, Peru, Bolivia, Paraguay, northern Chile, and northern Argentina, are considered yeísta dialects, which merge /ʎ/ to /ʝ/ (often realized as [j] in northern Ecuador and henceforth described as such); however, according to Haboud and de la Vega (2008), Andean Ecuadorian Spanish maintains the lleísmo contrast (i.e., /ʎ/ and /ʝ/ as separate phonemes) with a slight twist. In the northern provinces of Pichincha, Imbabura, and Carchi, speakers substitute /ʎ/ with /ʒ/, while contrasting it with /ʝ/ (e.g., calló [ka.ˈʒo] ‘shut.up.3.pst’ for [ʎ], versus cayó [ka.ˈjo] ‘fell.3.pst’). Due to this contrast, Argüello (1978) refers to the Ecuadorian Spanish in this region as the žeíta, a term that has gained ground in subsequent studies (see e.g., žeísmo in Gómez, 2003).

Another noticeable shift is the substitution of the Spanish trill (i.e., [r]) with an approximant trill (i.e., [ɾ]) or a voiced retroflex (i.e., [ʐ]), often referred to in the literature as an assibilated trill/ strident fricative (i.e., [ɻ]). An example of this shift appears in the word carro ‘car/bus’ being realized as [ˈka.ɾo] or [ˈka.ʐo] rather than [ˈka.ro]. While numerous studies have provided descriptions of the trill in the Ecuadorian highlands (e.g., Argüello, 1978; Bradley, 1999; Gómez, 2003; Hammond, 1999; Toapanta, 2016; inter alia), and others have mentioned it in passing (Argüello, 1980; Lipski, 1989, 1990; inter alia), acoustic studies have thus far been lacking. Regarding the origin of this shift, Adelaar and Muysken (2004, pp. 591–592) suggest that there is a sprachbund (i.e., convergence) phenomenon involving both the trill and lateral approximant in northern highland Ecuador, realized as [ʒ] and [ɜ] (respectively) in local Spanish and Quichua dialects. They also claim that it is unlikely that Quichua influenced this change since more conservative southern dialects do not contain these sounds in the same distributions. Similarly, Gómez (2003, p. 66) and Toscano-Mateus (1953, p. 95) argue that the ‘assibilated [ɻ]’ either developed in parallel in both Spanish and Quichua or that Andean Spanish may have influenced Quichua.

Based on survey data gathered by Gómez (2003) regarding the level of prestige of [ɾ] in various social classes, her findings suggest that more formal upper-class pronunciation favors the trill, while informal lower-class pronunciation disfavor its usage. Similarly, Haboud and de la Vega (2008) show variation in [r]-[ɾ]
pronunciation based on level of formality of a speech event and speaker age (i.e., older equating to greater assimilation).

1.2 Imbabura Quichua

Imbabura Quichua is a Quechuan language spoken by an estimated 150,000 people in the province of Imbabura (Gómez-Rendón, 2007). Like other Quechuan languages, it is a highly agglutinating language with SOV word order. It is documented that nearly every semantic field, “from kinship and household to religion, education and administration,” is influenced by Spanish lexical borrowings (Gómez-Rendón, 2007, p. 517).

Regarding phonological borrowings, Spanish mid vowels (i.e., /e, o/) appear to be entering Quichua’s three vowel system (i.e., /i, u, a/), both productively and perceptually, through Spanish borrowings (e.g., *libroka* [libroka] ‘book’ toP) (Stewart, 2014, 2018a), and Quichua speakers have already adopted the voiced series of stops (i.e., /b, d, g/) from Spanish borrowings (e.g., *vicinaka* [bisinaka] ‘neighbor’ toP) (Stewart, 2015, 2018b).

The voiced alveopalatal fricative [ʒ] is a highly productive phoneme in Imbabura Quichua, having replaced a number of phonemes found in other Quichua dialects. Toapanta and Haboud (2012) show that what are considered a lateral approximant /ʎ/, a voiced affricate /ʤ/, and a voiced alveopalatal fricative /ʒ/ in other Quichua dialects only appear as [ʒ] in Imbabura; for example, they show that what Cordero (1892) considers as distinct phonemes (i.e., /ʎ/ and /ʒ/) in more southern dialects are both produced as [ʒ] in Imbabura. Moreover, what Orr (1962) describes as the voicing of /ʨ/ (i.e., [ʤ]) in post-nasal position in other Quichua dialects undergoes spirantization to [ʒ] in Imbabura Quichua. Cole (1982) notes that the only lateral liquid in Quichua is the apico-alveolar lateral /l/, and that while many Peruvian dialects maintain /ʎ/, speakers of Imbabura Quichua historically shifted the lateral approximant to /ʒ/. Like Orr, Cole also shows that the post-nasal voiced allophone of /ʧ/ is pronounced as [ʒ] rather than [ʤ].

According to Stark and Muysken (1977, p. 365), <r> in both word-initial and word-final positions is produced as a “resonating voiced alveopalatal,” as in the word *perro* ‘dog’ in the Ecuadorian highlands. In word-medial position, they claim that this grapheme is pronounced as a “voiced vibrant,” as in the word *pero* ‘but.’ Contrarily, Orr (1962, p. 77) claims that “all word-initial r’s are retroflexed ([ɻ]) in the mountain dialects and flapped ([ɾ]) in the jungle dialects,” while making no mention of ‘r’ as an alveolar trill. Toapanta and Haboud (2012) claim that ‘r’ is produced as both a tap (i.e., [ɾ]) and a fricative (i.e., [ɻ]). Cole (1982, p. 202) claims that the “flapped dental liquid” is pronounced as a voiced retroflex fricative [ʒ] in word initial position and as a flap elsewhere” (e.g., *rasu* [ˈʐasu] ‘snow’). He
also claims that Spanish borrowings containing the “rolled alveolar” /ɾ/ are pronounced as a voiced retroflex fricative [ʐ] (e.g., burro ‘donkey’ produced as [bu. zo]). While it is not often documented, /ʐ/ also exists in word-medial position in native Quichua words (e.g., the interjection arrarray [a.za.’zai] ‘it’s so hot!’).

1.3 Media Lengua

Media Lengua (ML) is often described as a prototypical bilingual mixed language (Backus, 2003; McConvell & Meakins, 2005) because of its split between roots (mostly of Spanish-origin ~ 90%+) and suffixes (mostly of Quichua origin). ML appears to have mainly formed through a process of relexification in which nearly all the lexical roots in Quichua, including core vocabulary, were replaced by their Spanish counterparts. Impressionistically, ML appears to conform to the Quichua sound system (Gómez-Rendón, 2005; Muysken, 1997), while also maintaining Quichua word order and the vast majority of Quichua’s agglutinating suffixes (Muysken, 1997; Stewart, 2011). While ML impressionistically sounds like Quichua, a number of studies by Stewart (2014, 2015, 2018a, 2018b) show that the language has borrowed several sounds from Spanish, including Spanish mid-vowels and voiced stops; therefore, it is of interest to learn how Spanish-origin /ɾ/ and /ʎ/ behave in ML. An example of ML is provided in (1), where the italicized elements in the interlinear gloss are of Spanish-origin and the sounds under analysis in this study are bolded.

(1) Ese cabañlloca elpa rrabowanllata quitachin moscota.
[elicited by the author, 2015]
Ese kabazu–ka el-pa zabo-wan-ʒata quita-chi-n
DET horse-TOP 3-POSSESS tail-INSTR-TOTAL remove-CAUS-3
mosko-ta. Consultant #43
fly-ACC2
‘That horse swishes at the flies with his tail to get rid of them.’

2. Production of liquids and fricatives

To document variation of liquid and fricative consonant production in the region, acoustic correlates are used to categorize the phones. The following subsections
describe correlates that are used as general guidelines for identification and categorization.

2.1 Trills \([r]\) and approximant trills \([\tilde{r}]\)

As per Ladefoged and Maddieson (1996), trills are described as vibrations of an active articulator (e.g., tongue or lips), driven by aerodynamic conditions rather than muscular exertion during vibration (essentially, the Bernoulli effect), similar to vocal fold vibration during voicing. According to McGowan (1992) and Johnson (2008), trill production requires precise positioning of the active articulator and critical levels of airflow pressure. If such conditions are not met, vibrations may not occur, resulting in a non-trilled rhotic or a trill flanked by approximants (see Figure 1B), which I refer to as an approximant trill \([\tilde{r}]\) (as per Bradley & Willis, 2012; Díaz-Campos, 2008). Cross-linguistically, approximant phases during apical trill production appear to indicate the failure to consistently maintain/return the tongue against the palate.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Aperture Phases</th>
<th>Closure Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Image A represents a prototypical trill in the word *burro* ‘donkey’. This instance, produced by a female speaker of Quito Spanish, contains 4 (c)losure and 3 (a)perture phases, with both averaging 21 ms in duration. Image B represents an approximant trill in the word *terremoto* ‘earthquake’, as produced by a different female speaker of Quito Spanish, with 2 (p)artial (c)losure phases (averaging 22 ms) and one (a)perture phase (averaging 19 ms). The first phase appears to have less energy than the second, yet both contain clear vowel-like formants that smoothly transition through the partial closure phases. Both words were uttered in isolation.

Apical trills generally contain two to three periods of vibration, where each period consists of a closed and open phase (see Figure 1A). During the closure phase, spectral energy may either be reduced or completely cut off during articulator contact (Ladefoged & Maddieson, 1996). On the other hand, the aperture phase produces vowel-like or approximant spectra, where dark concentrations of energy...
appear in formant regions. Third formant lowering has also been attested by both Kavitskaya (1997) and Fant (1970) for Russian trills. Temporal analyses of Finnish and Russian trills reveal that their closed phase lasts 25 ms on average, while their open phase is roughly the same duration, creating a full cycle of ~50 ms.

2.2 Fricatives [ʒ] and [ʐ]

Both [ʒ] and [ʐ] are pre-palatal voiced coronal fricatives that differ only in tongue position, with the latter containing some degree of sub-apical curling or flattening (i.e., retroflex) and greater retraction of the tongue body. According to Reetz and Jongman (2009, p. 189), fricatives can be characterized in terms of four attributes: (1) spectral properties of the frication noise, (2) noise amplitude, (3) noise duration, and (4) spectral properties of formant trajectories into and out of surrounding vowels. The most notable difference between the palatal and retroflex fricatives in Figure 2 is the low spectral energy in B, which resonates between 3,000 and 5,000 Hz, while the spectral energy in A (not visible in Figure 2A) resonates between 7,500 and 10,000 Hz.

Cross-linguistically, low spectral energy in retroflex fricatives is a common acoustic correlate; for example, Lee (1999) shows that spectral energy in Beijing Mandarin may reach as low as 2,000 Hz for [ʂ]. Additionally, retroflex consonants generally show lowering of the third formant during the transition from the preceding vowel and rise into the following vowel (as observed in Figure 2B, though not in Figure 2A), which is a characteristic that can be predicted by both articulatory and

Figure 2. Image A represents a voiced palatal fricative in the word pollo ‘chicken,’ as produced by a female speaker of Quito Spanish. Image B represents a voiced retroflex fricative produced by a female speaker of rural Spanish in the word terreno ‘land.’ Both words were produced in isolation.
manner-specific cues (Hamaann, 2003). According to Fant (1968), the lowering of high frequency formants in retroflex sounds is linked to place of articulation, where alveololars show lowering in F4 towards F3, while palatals show lowering of F3 towards the F2 range. According to Gordon, Barthmaier, and Sands’ (2002) analysis of Toda fricatives in the speech of three women and three men, measurements from formant transitions during the last 23 ms of a vowel into a voiceless retroflex show that retroflexion caused lowering of F3, while the same transition into a palato-alveolar caused a raise in F2. They consider that F3 lowering might be an important cue for differentiating retroflexes from other sibilants. Similar results are present in Figure 2B, with F3 reaching 2,747 Hz and F2 reaching 1,787 Hz during the final 13 ms of the first vowel. These trends suggest that a more retracted tongue position equates to lower average F3 frequencies during vowel-to-retroflex transitions. Therefore, the two distinguishing correlates between [ʒ] and [ʐ] used in this study are: (1) Location of spectral energy during fricatives and (2) Lowering of F3 frequency in retroflexes during formant transitions from preceding vowels compared to that of [ʒ].

2.3 Approximants [ʎ] and [j]

The palatal approximant [ʎ] falls within the lateral classification, which is broadly defined in Ladefoged & Maddieson (1996, p. 182) as “sounds in which the tongue is contracted in such a way as to narrow its profile from side to side so that a greater volume of air flows around one or both sides than over the center of the tongue.” Regarding position, palatograms of palatal laterals (i.e., [ʎ]) in Spanish show extended contact between the tongue dorsum and the hard palate, much more so than with [l], and little to no contact involving the tongue apex (Navarro-Tomás, 1968).

According to Zampaulo (2013), when formant frequencies of Spanish [ʎ] (F1 = 290 Hz, F2 = 2,047 Hz; see Quilis, 1993) are compared with those of Spanish [j] in lleísta dialects (F1 = 337 Hz, F2 = 2,064 Hz; see Rost Bagudanch, 2011), there is very little difference. He also notes that there is substantial variation in how [ʎ] is produced, so much so that he hypothesizes that there may be increased chances of listeners misidentifying [ʎ] as [j] (though it should be noted that high frequency minimal pairs are few in Spanish). Despite this claim, Figure 3 illustrates two identifiable acoustic correlates that consistently differentiate [ʎ] from [j], namely high F3 and F4 peaks in [j] near the center of the segment (see Figure 3A), which do not appear in [ʎ] (for reference see Figure 10CD). In addition, the second half of the segment in Figure 3B involves the production of lateral noise causing dispersion in the higher formants and the appearance of striations in the spectrogram between the F1 and F2 formant paths.
Chapter 5. A preliminary, descriptive survey of rhotic

Figure 3. Image A represents a palatal approximant in the word Maya ‘Mayan/proper name.’ Image B represents a palatal lateral approximant in malla ‘mesh.’ Both words were produced in isolation by a female speaker of Quito Spanish.

3. Method

3.1 Field locations

To explore the nature of the liquid-to-fricative shift in Ecuadorian Spanish, Quichua, and ML, this study makes use of acoustic measurements from six speech communities (illustrated in Figure 4). For Urban Spanish, these include recordings from the nation’s capital of Quito and Imbabura’s provincial capital of Ibarra, located 115 km to the north of Quito. For Rural L1 Spanish, recordings were gathered from the community of La Cadena, located on the eastern slopes of Mt. Imbabura and 7 km south of Ibarra. For Quichua and L2 Spanish, recordings were collected from bilingual speakers from the community of Chirihuasi, located approximately 3 km up slope from La Cadena, and in the community of Cashaloma, located 1.5 km up slope from Chirihuasi. Recordings of ML were gathered from the community of Pijal, located approximately 43 km south of Chirihuasi by main road (15 km hike).

3.2 Participants

Eighty-three participants took part in this study. From the Urban Spanish groups, 14 monolingual participants were from Quito and 10 monolinguals were from Ibarra. From the Rural Spanish groups, 16 monolingual participants were from La Cadena, and 14 bilingual participants (L1 Quichua) were from Chirihuasi and Cashaloma. Ten of these same bilingual participants also provided Quichua data.
along with 10 additional participants, also from Chirihuasi. Four other bilingual participants from Chirihuasi, who only produced Spanish data, also participated. For the ML group, 19 trilinguals (i.e., ML, Quichua, Spanish) from Pijal also participated in the study (see Table 1 for further details).

Of the 20 Quichua participants, all are L1 Quichua-L2 Spanish bilinguals. Four women had a rudimentary level of Spanish, one man and one woman were simultaneous bilinguals, and one man acquired Spanish at the age of 18, while the rest acquired Spanish upon entering primary school, typically at 6–7 years of age. All participants were born and raised in their respective linguistic communities. Of the 19 ML participants, 17 acquired Quichua and ML from birth and learned Spanish upon entering primary school, typically at the age of 6 or 7. The two remaining participants were passive bilinguals in ML and Quichua, having been exposed to ML and Quichua from birth, but were raised speaking Spanish with their parents.
Table 1. Participant counts

<table>
<thead>
<tr>
<th>Language</th>
<th>Total participants</th>
<th>Total women</th>
<th>Total men</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quito Spanish</td>
<td>14</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Ibarra Spanish</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Rural Spanish</td>
<td>16</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>L2 Spanish</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>L2 Spanish & Quichua</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Quichua</td>
<td>10</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Media Lengua</td>
<td>19</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>83</td>
<td>52</td>
<td>31</td>
</tr>
</tbody>
</table>

3.3 Materials

Liquid and fricative data were gathered from two data sets I collected in the field, yielding a total of 3,096 tokens.\(^3\) The first contained elicited data of ML and Quichua translations as well as reading lists produced by the Ibarra Spanish speakers (1,572 tokens). Elicitation sessions lasted approximately 15 minutes and the reading list with 98 sentences took approximately 5.5 minutes to complete (see Appendices A and B).

The second data set contained sentence list and word list data read by speakers of each language variety other than Ibarra Spanish (1,524 tokens; see Appendix C).\(^4\) The ML and Quichua data were presented in short phrases on a computer screen to prime these languages and to avoid possible ‘switches’ in language mode, as borrowed lexical items in isolation may be ambiguous as to their source (e.g., *carro* ‘car/bus’ is the same word in all three languages). For the Spanish word list, additional words were added containing the sounds under investigation. For this list, each word was presented in isolation and read off a computer screen. These sessions lasted approximately 4–7 minutes.

The majority of words from both data sets (i.e., 57%) contain underlying trills, taps, palatal approximants, and palatal lateral approximants from Spanish and Spanish-origin words, and taps, voiced retroflex fricatives, voiced alveopalatal fricatives, and palatal approximants from Quichua and Quichua origin words, all

3. Neither data set was specifically designed for this study, yet both contained a wealth of clear tokens ideal for analysis.

4. It should be noted that due to differences in tasks (i.e., reading sentence and word lists versus elicitations), there may be some variation in the production of the sounds under analysis.
of which occur in word-medial position. Twenty-four percent of the tokens are in word-initial position (excluding taps, due to their distribution) and 18% are found in word-final position (only taps, due to their distribution).

Tokens from ML were gathered from both Spanish and Quichua lexical borrowings. These phonemes have the same graphemes as in Spanish: <ll>, <rr->/<r->, <r-/>/<r->, and <y-/>/<y-> (e.g., llubia /ʒubia/ ‘rain,’ rio /ʒio/ ‘river,’ caro /kaɾo/ ‘expensive,’ carro /kaɾo/ ‘car/ bus,’ and yo /jo/ ‘I’). Tokens from Quichua also came from both Spanish borrowings and native Quichua words, which have the same graphemes as ML (e.g., llakillami /ʒankiʃami/ ‘It’s just sad.’ rurangi /ʒurangi/ ‘You do/make,’ guyanimi /jujanimi/ ‘I think.’)

3.4 Procedures

Tokens were analyzed from two data sets that differed in terms of how speech data was gathered; the first includes data collected in elicitation sessions (Section 2.3.1) and the second includes data gathered through the reading of word lists and/or sentence lists (Section 2.3.2). All consultants were monetarily compensated for their time.

3.4.1 Elicitation sessions

For the elicitation sessions, sentences were read aloud by either a native Spanish speaker (from Quito) or the author (a native speaker of English and a near native speaker of Spanish). The participants were asked to give their best oral translation of each sentence and wait at least five seconds before producing the utterance. Consulting with other native speakers of the target language was encouraged if any doubt arose. Voluntary written consent from the participants was received before each session began. Demographic information was also gathered from the participants prior to beginning the task. For the ML and Quichua elicitations, each sentence was read aloud in Spanish by the author or the native Spanish speaking assistant. For the Quichua elicitations, a native Quichua speaker interpreted if confusion arose. To help reduce Spanish influence, elicitation sessions were

5. It should be noted that since a native speaker of ML or Quichua did not elicit the sentences, there may be an increased chance of accommodation or hypercorrection in productions; however, this is not noted in the results, as Spanish-origin words containing /r/ were never trilled in ML and Quichua, and Spanish-origin words containing /ʎ/ were rarely produced as such (i.e., /r/ and /ʎ/ were overwhelmingly realized as [ʒ] and [ʒ], respectively).

6. Consultations with other participants and the five-second waiting period made it more likely that speakers were accessing their long-term memory and reducing mimicry (Guion, 2003).
held with three or more participants in their homes, and they were asked to speak in their language when consulting amongst themselves. Participants from both groups were also asked to repeat their utterance if needed. It should be noted that this method of data elicitation often produces idealized tokens compared to the realities of spontaneous speech. As such, it was also observed that some speakers produced prescriptivized tokens that were not observed in informal conversations. Therefore, frequency counts in this study may not be representative of spontaneous speech. Responses from the elicited sentence list were recorded in 16-bit Waveform Audio File Format (WAV) with a sample rate of 44.1 kHz on a TASCAM DR-1 portable digital recorder, using TASCAM’s compatible TM-ST1 MS stereo microphone set to 90˚ stereo width placed fixed on a mic stand.

3.4.2 Reading sessions
For the reading sessions, participants were informed that they would be asked to read a series of short sentences (for the Quichua and ML groups) or words (for the Spanish groups) from a computer screen. As with the elicitation sessions, written consent was received, and demographic information was gathered before beginning. If a participant could not read (two cases in both ML and Quichua), the author (twice, once for each language) or the assistant (twice, once for each language) read the sentences/words and ask the participant to repeat them twice. In such cases, the second utterance was used for analysis. If a participant struggled with reading, he or she was asked to repeat the sentence/word from memory to allow for a more naturalistic sample. Readings were recorded using a NEXXTech unidirectional dynamic microphone (50–13,000 Hz response) set to 90˚ stereo width. Both elicitation and reading sessions were recorded in the same format and sample rate mentioned in Section 3.4.1.

3.5 Categorization
Phonetic variation was categorized based on the acoustic correlates of each token observed in Praat version 6.0.19 (Boersma & Weenink, 2016). The basic criteria for categorization was based on the descriptions in Sections 2.1–2.3; however, such descriptions alone were not entirely adequate due to the wealth of variation and consonant clusters identified in the data. Therefore, criteria were expanded beyond these guidelines when deemed necessary. Such criteria typically involved simply combining the descriptions from Sections 2.1–2.3 (e.g., a voiced retroflex phase following an approximant tap (i.e., [ɾ̞ʐ]) or an approximant phase during the closure of a trill following a complete closure phase (i.e., [rr])). For other instances (e.g., [ʒ] vs. [ʃ]), the informal judgements of three native speakers of Quito Spanish were considered for categorization. To elicit judgments, listeners were asked to
informally listen several times to an isolated syllable containing the token in question alongside another syllable with a more ‘prototypical’ form from their dialect. They were then asked if the two syllables sounded the same or different. If they responded ‘different,’ they were asked to describe the difference.

4. Results

Upon analysis, a great deal of variation in the four phonemes under investigation (i.e., /r, ɾ, ʎ, j/) was revealed. The trill data contains 19 forms, ranging from prototypical [r] to complex clusters, such as [rz]. Thirty-one varieties were identified in the tap data, 13 in the palatal lateral approximant data, and three in the palatal approximant data. From a purely phonological standpoint, a number of different variants/allophones of each phoneme have been identified, which appear to vary freely across speakers, especially for /r/, /ʎ/, and word-final /-ɾ/. The following sections (4.1–4.4) provide a breakdown of the variations observed and their distributions across each language variety. They also contain figures that illustrate much of the variation under analysis.

4.1 Trills (Spanish) and voiced retroflex fricatives (Quichua)

Table 2 outlines the phonetic variations of orthographic <r-/rr->, with the most common realization in five of the six language varieties being the voiced retroflex fricative (i.e., [ʐ]; see Figure 5). The exceptional case is Ibarra Spanish, which at first glance appears to maintain prototypical [r]; however, it should be noted that speakers of Ibarra Spanish are often stigmatized for their extensive use of [ʐ] for /r/, which most likely resulted in idealized tokens ([r] 43%, n = 94) during the recording sessions.

In a possible attempt to produce the idealized trill, Ibarra speakers also show the highest degree of trills produced as taps (13%, n = 94) and tap-voiced retroflex clusters ([rz] 13%, n = 94). Quichua (75%, n = 204) and ML (85%, n = 152) speakers overwhelmingly produced [ʐ], with [ʒ] and [ʂ] in a distant second and third place (see Figure 7EF). No Quichua or ML tokens were identified as a trill, though it appears that L2 speakers are aware of the difference, as 15% (n = 94) of the L2 Spanish tokens were identified as trills or trill-like (i.e., [r, ɾ, ɻ], see Figure 6ABC).

An anonymous reviewer kindly pointed out that the use of inferential statistics may shed some light on possible correlates responsible for some of the variation identified in this study. While this is beyond the current scope of this initial descriptive survey, it is important that inferential statistics are used in follow-ups to this work.

7. An anonymous reviewer kindly pointed out that the use of inferential statistics may shed some light on possible correlates responsible for some of the variation identified in this study. While this is beyond the current scope of this initial descriptive survey, it is important that inferential statistics are used in follow-ups to this work.
Table 2. Allophonic variations of /r/ across each language variety. Numbers refer to the quantity of tokens analyzed

<table>
<thead>
<tr>
<th>Language</th>
<th>/r/</th>
<th>/r̃/</th>
<th>/rr/</th>
<th>/ɹ/</th>
<th>/ɹ̃/</th>
<th>/ɹʃ/</th>
<th>/ʂ/</th>
<th>/ʐ/</th>
<th>/ʔʐ/</th>
<th>/ʒ/</th>
<th>/ʒ̥/</th>
<th>/ʒʃ/</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quito Sp.</td>
<td>31</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Ibarra Sp.</td>
<td>40</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rural Sp.</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>46</td>
</tr>
<tr>
<td>L2 Sp.</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Quichua</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>ML</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>35</td>
<td>5</td>
<td>4</td>
<td>33</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>23</td>
<td>11</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 5. Voiced retroflex fricative (i.e., [ʐ]) produced in isolation by a female speaker of rural Spanish in the word *terreno* 'land.' This is reproduced, in its entirety, from Figure 2B.

L2 speakers of Spanish overwhelmingly produced [ʐ] (53%, n = 94) or its voiceless variant [ʂ] (15%, n = 94). For the speakers of Quito Spanish, roughly half (43%, n = 111) of the tokens were identified as trills or trill-like (i.e., [r, ɾ, ɾ̃, rr̃], see Figure 6ABCD), while roughly the other half (47%, n = 111) resulted in the fricative or fricative-like tokens [ʐ, ʂ, ʔʐ] (see Figure 5 and Figure 7EG). A substantial number of trills (12%, n = 111) were also realized as taps or tap variations (i.e., [ɾ, ɾ̃, (ɾ), jɾ, jɾ̝, ɾʐ, ɾʂ, ɾ̃ʐ, ɾ̃ʂ, ʂ, ʐ, ʔʐ, ʒ, ʒ̥, ʒʃ]).

Of the trills, the approximant trill (i.e., [ɾ̃]) is the second most common (Figure 6B). This variant was identified as a trill with continuous formant structure during the closure phases of the trill based on the description of approximant taps (i.e., [ɾ]) in Bradley and Willis (2012).
Figure 6. Image A and B are reproduced here from Figure 1 for reference. Image C represents a voiceless trill in word-initial position in the word *ron* 'rum,' as produced by a male speaker of L1 rural Spanish. This segment contains 3 (a)perture phases that show no discernible formant patterns. The final AC phase may be a release, though it is difficult to ascertain. Image D represents a trill-approximant trill cluster in the word *terreno* 'land' with clear (c)losure in the first phase and (p)artial (c)losure in the second. This segment was produced by a speaker of Quito Spanish.

Figure 7. In continuation from Figure 6, image E, produced by a female speaker of rural L1 Spanish, represents a voiceless retroflex fricative in lieu of a trill in the word *terreno* 'land.' Image F, produced by a female ML speaker, represents a voiced alveopalatal fricative in the word *terreno-ka* 'land-top' in the phrase *terrenoka grandimi* 'The [plot of] land is large.' Image G, produced by a male speaker of Quito Spanish, represents a glottal stop-voiced retroflex fricative cluster in the word *terreno* 'land.'
Beyond the observed continuant patterns of [ʂ] and [ʐ], nearly every instance of these phones was identifiable by an audible ‘whistle’ produced during the segment, most notably in the voiceless variant (see Figure 7E).\(^8\) Other variants of interest include differences between [ʒ] and [ʒ̊], where the former was informally perceived (by both native speakers and myself) as a voiced [ʒ], but the waveform and spectrogram revealed voiceless noise throughout most of the segment (see Figure 10E). Acoustic analysis revealed that the latter (i.e., [ʒ̊]) maintains the devoiced pattern from approximately the middle of the segment until the end. When played informally for native listeners of Quito Spanish, alongside voiced [ʒ] and voiceless [ʃ] in an /eXo/ frame, listeners unanimously chose [ʃ] when asked which token it most resembled. Five voiceless trills were also identified in the data. In these instances, clear closure phases were identified between phases with higher energy output, which resembled release bursts with no formant structure (see Figure 6C).

4.2 Taps

Table 3 outlines the phonetic variation of the tap /ɾ/ (i.e., orthographic <-r/-r>), with the most common realization in all six language varieties being the tap (see Figure 8A).

Approximant taps are the second most common realization of /ɾ/ (see Figure 8B), and are also quite common in all six language varieties. Like the approximant trills, approximant taps were identified as taps with continuous formant structure during the closure phase (Bradley & Willis, 2012). One of the few trends outlined in (2), which may be attributed to a co-articulation effect, is the realization of an approximant after a tap (or an approximant tap) when the tap directly precedes a consonant (see 2a and Figure 8E).\(^9\) A similar pattern also occurs where an approximant is realized before a tap (or approximant tap) directly following a consonant (see 2b and Figure 9A). The trends described in (2a–b) are observed across all six language varieties; however, they are not present in every instance in any of the language varieties. Another realization of taps preceding a consonant (see 2c and Figure 8D), most notably voiceless stop consonants, was a complete lack of the release phase.

(2) Tap trends
a. \(r \rightarrow r̊/\) _C deporte ‘sport’ /deporte/ → [depoɾjte]
b. \(r \rightarrow jɾ/\) C _ diciembre ‘December’ /disiembɾe/ → [disiembɾje]
c. \(r \rightarrow i̊/\) _Voicless Stop parques ‘parks’ /pærkes/ → [pærkes]

8. An anonymous reviewer pointed out that the whistling heard with the retroflexed fricatives is reminiscent of some speakers of Peninsular (Castilian) Spanish.

9. An anonymous reviewer pointed out that the approximant phase might actually be an intrusive vowel.
Table 3. Allophonic variations of /ɾ/ across each language variety. Numbers refer to the quantity of tokens analyzed

<table>
<thead>
<tr>
<th>Language</th>
<th>Variation of /ɾ/ <<-r->/<-r></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r y j (r) sj sj yh yh</td>
</tr>
<tr>
<td>Quito Sp.</td>
<td>75 53 13 8 17 61 5 24 5 12 2</td>
</tr>
<tr>
<td>Ibarra Sp.</td>
<td>37 29 25 30 4 8 3 0 9 33 0 1 3 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 187</td>
</tr>
<tr>
<td>Rural Sp.</td>
<td>63 13 1 8 1 18 14 17 4 17 3 8 12 20 0 0 0 0 0 0 8 5 0 10 7 1 2 1 1 4 0 239</td>
</tr>
<tr>
<td>L2 Sp.</td>
<td>50 12 6 10 7 29 37 35 2 13 4 4 8 9 1 2 4 6 11 1 12 13 12 3 3 3 1 0 0 0 0 299</td>
</tr>
<tr>
<td>Quichua</td>
<td>38 12 2 8 8 12 1 10 0 2 0 0 3 1 0 0 0 0 0 14 3 1 0 2 0 0 0 1 0 118</td>
</tr>
<tr>
<td>ML</td>
<td>26 17 3 3 14 15 0 3 5 8 0 0 4 7 0 0 1 0 0 0 8 3 0 2 2 0 0 0 0 0 0 0 122</td>
</tr>
<tr>
<td>Total</td>
<td>289 136 50 67 51 143 60 89 25 85 9 25 33 41 1 2 5 6 11 1 43 25 13 35 26 8 3 1 1 9 7 1312</td>
</tr>
</tbody>
</table>
Instances of the (2c) type resemble word-final unreleased stops that quickly taper off in amplitude. These realizations are most prevalent in the urban varieties of Spanish.

Figure 8. Image A represents a prototypical tap, as produced by a male speaker of Quito Spanish in the word ‘deberes’ ‘homework.’ Image B represents an approximant tap in the word ‘computadora’ ‘computer,’ as produced by a female speaker of Quito Spanish. Image C represents a ‘perceptual tap,’ which is indicated by only a slight decrease in energy in the speech signal. This instance was produced by a female speaker of Quito Spanish in the word ‘turista’ ‘tourist.’ Image D represents an unreleased tap in the word ‘deporte’ ‘sports,’ as produced by a male speaker of rural Spanish. Image E represents a tap followed by an approximant phase before closure in the following stop. This instance was produced by a female speaker of Quito Spanish in the word ‘deporte’ ‘sports.’

Beyond these patterns, there is a great deal of variation observed, particularly in word-final position. One of the more common occurrences is the quasi-absence of a tap. Bradley and Willis (2012, p. 51) label such realizations as ‘perceptual taps,’ and describe them as “typically having a slight reduction in the amplitude of the wave form or the intensity of F3 or F4” (see Figure 8C). Other common realizations include taps or approximant taps followed by aspiration (see Figure 9C), frication (see Figure 9BD) or combinations of frication and aspiration (see Figure 9E).

10. An anonymous reviewer pointed out that the aspiration at the end of this word could simply be a transition into silence rather than an actual speech sound. I agree that this is a possibility.
Figure 9. Image A represents an approximant phase after /b/ followed by a tap, as produced by a speaker of Quito Spanish in the word diciembre 'December.' Image B represents a tap with a release followed by a voiceless retroflex fricative in the word dolor 'pain,' as produced by a speaker of L1 Rural Spanish. Image C represents a tap followed by aspiration in word-final-position in the word besar 'kiss,' as produced by a speaker of L1 Rural Spanish. Image D represents a tap followed by a voiced retroflex fricative in word-final position in the word terminar 'finish,' as produced by a speaker of L1 Rural Spanish. Image E represents a complex cluster consisting of an approximant tap followed by a voiced retroflex fricative that subsequently devoices and then undergoes debuccalization at its end. This instance was produced in word-final position by a speaker of L2 Spanish in the word quedar 'stay.'

L2 Spanish, Quichua speakers and, to a degree, ML speakers also produced a relatively high number of pure retroflex fricatives (i.e., [ʂ], [ʐ], and the [ʐʂ] cluster), suggesting some crossover with orthographic <r/-rr-> (see Figure 5 and Figure 7A). Speakers of Quito Spanish also produced a substantial number of taps as trills or trill variants (13%, n = 340; see Figure 6 and Figure 7 for trill and trill variants). When asked if the <rr>s in these words sounded typical, informal native speaker judgements suggest that the speakers responsible for these trills were exaggerating due to the formality of the recording session. Lastly, there are several occurrences of taps realized as voiceless approximant trills in Quito Spanish.

4.3 Palatal lateral approximants (Spanish) and voiced alveopalatal fricatives (Quichua)

Table 4 outlines the phonetic variation of orthographic <ll>, with the most common realization being the voiced alveopalatal fricative (i.e., [ʒ]; see Figure 10A).

Both Quito and Rural Spanish speakers produced other variants more frequently. Speakers of Quito Spanish tended to produce more voiced palatal stops (i.e., [ɟ]; see Figure 10B) than any other segment, while Speakers of rural Spanish produced more lateral approximant-high front vowel clusters (i.e., [ʎi]; see Figure 10C). The voiced palatal stop is also common in all native varieties of
Table 4. Allophonic variations of /ʎ/ across each language variety. Numbers refer to the quantity of tokens analyzed.

<table>
<thead>
<tr>
<th>Language</th>
<th>Variation of /ʎ/ <ll> (Spanish)</th>
<th>/ʒ/ <ll> (Quichuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quito Spanish</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Ibarra Spanish</td>
<td>16</td>
<td>39</td>
</tr>
<tr>
<td>Rural Spanish</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>L2 Spanish</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Quichua</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Media Lengua</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>9</td>
</tr>
</tbody>
</table>

Spanish. Prototypical [ʎ] (see Figure 10D) was also produced, to a lesser degree, by speakers of all language varieties other than ML, where it was identified only once.

Figure 10. Image A represents a voiced alveopalatal fricative, as produced by a speaker of Quito Spanish in the word llama ‘llama.’ Image B represents a voiced palatal stop in the word llama ‘llama,’ as produced by a speaker of Quito Spanish. Image C represents a cluster consisting of [ʎi] in the word llanta ‘tire,’ as produced by a speaker of L1 Rural Spanish. Image D represents a palatal lateral approximant in the word llamar ‘call,’ as produced by a speaker of L1 Rural Spanish. Image E represents a devoiced alveopalatal fricative in the word llenami ‘full-val,’11 as produced by a ML speaker.

Similar to trills and taps, it was also found on several occasions that Quichua and ML speakers produced [ʒ] as a retroflex fricative (i.e., [ʐ] or [ʂ]; see Figure 5 and Figure 7E, respectively, for reference) or devoiced to [ʃ] (see Figure 11A) or partially devoiced to [ʒ̥] (see Figure 10E).

11. val = validator marker.
Several speakers of Quito Spanish produced a number of clusters involving a final approximant preceding either a voiced or voiceless palatal stop (i.e., [cj] or [jj]; see Figure 11B and Figure 11C, respectively) or a voiceless palatal fricative (i.e., [çj]; see Figure 11D). One ML speaker also produced an interesting cluster comprised of [ʒʃj] (see Figure 11E).

4.4 Palatal approximants

Table 5 outlines the segment with the least amount of variation, the palatal approximant /j/ (i.e., orthographic <y>). Its most common realization is prototypical [j] (see Figure 12A).

Table 5. Allophonic variations of /j/ across each language variety. Numbers refer to the quantity of tokens analyzed

<table>
<thead>
<tr>
<th>Language</th>
<th>Variation of /j/ <y></th>
<th></th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>j</td>
<td>jj</td>
<td>çj</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quito Spanish</td>
<td>34</td>
<td>12</td>
<td>4</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Ibarra Spanish</td>
<td>101</td>
<td>24</td>
<td>1</td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>Rural Spanish</td>
<td>61</td>
<td>5</td>
<td>0</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>L2 Spanish</td>
<td>54</td>
<td>1</td>
<td>0</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Quichua</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>Media Lengua</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>344</td>
<td>42</td>
<td>5</td>
<td></td>
<td>396</td>
</tr>
</tbody>
</table>
Nonetheless, we observe that speakers of Ibarra Spanish produced a substantial number of \([jj]\) clusters (19%, \(n = 126\); see Figure 12C). The varieties with the greatest variation are the urban varieties of Spanish, which also include instances of \([çj]\) (see Figure 12B).

Figure 12. Image A represents a prototypical palatal approximant, as produced by a speaker of L1 Rural Spanish in the word yoga 'yoga.' Image B represents a \([çj]\) cluster in the word cabuya 'fique rope,' as produced by a speaker of Quito Spanish. Image C represents a \([jj]\) cluster in the word yoga 'yoga,' as produced by a speaker of L1 Rural Spanish.

4.5 Results summary

Based on the results of this preliminary analysis, the percentages of the most common variants of each phone (excluding clusters) are presented in Table 6.

This breakdown reveals that both ML and Quichua overwhelmingly produce orthographic \(<r/-rr->\) and \(<ll>\) as \([z]\) and \([ʒ]\), respectively. Results also show that Spanish dialects with close contact with Quichua (i.e., L2 and L1 Rural) favor \([z]\) over \([r]\) for /r/, though with greater variation. A similar trend is found for /ʎ/ regarding L2 Spanish production, with speakers producing \([ʒ]\) over \([ʎ]\), though with greater variation than when speaking Quichua. Rural L1 Spanish shows a large shift away from \([ʒ]\) toward other variants (namely \([ʎi]\), not presented in Table 6), possibly as a mechanism for group disassociation. Contrarily, Ibarra Spanish speakers show a preference toward \([ʒ]\) (on par with L2 Spanish speakers), while Quito Spanish speakers favor \([çj]\) (not presented in Table 6) for /ʎ/; these points provide evidence that Urban Spanish is split up in various sub-dialects. The tap /ɾ/ shows the greatest amount of variation in each language group, with prototypical \([ɾ]\) yielded at an average frequency of just 22% (Quichua speakers are most consistent at 32%). Finally, for /j/, speakers from all language varieties overwhelmingly prefer \([j]\).
Table 6. Percentages of the most common variants identified in this study (excluding clusters)

<table>
<thead>
<tr>
<th></th>
<th>/ɾ/</th>
<th>/ʒ/</th>
<th>/ɾ̝/</th>
<th>/ʎ/</th>
<th>/j̃/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quito Spanish</td>
<td>28%</td>
<td>33%</td>
<td>39%</td>
<td>22%</td>
<td>18%</td>
</tr>
<tr>
<td>Ibarra Spanish</td>
<td>43%</td>
<td>23%</td>
<td>34%</td>
<td>20%</td>
<td>4%</td>
</tr>
<tr>
<td>Rural Spanish</td>
<td>8%</td>
<td>42%</td>
<td>50%</td>
<td>26%</td>
<td>8%</td>
</tr>
<tr>
<td>L2 Spanish</td>
<td>10%</td>
<td>53%</td>
<td>37%</td>
<td>17%</td>
<td>10%</td>
</tr>
<tr>
<td>Quichua</td>
<td>0%</td>
<td>75%</td>
<td>25%</td>
<td>32%</td>
<td>10%</td>
</tr>
<tr>
<td>Media Lengua</td>
<td>0%</td>
<td>85%</td>
<td>15%</td>
<td>21%</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>12%</td>
<td>57%</td>
<td>31%</td>
<td>22%</td>
<td>11%</td>
</tr>
</tbody>
</table>

5. Discussion

5.1 Fricative maintenance/divergence

Two observations from the literature are confirmed in this study: (1) Spanish speakers of all dialects most often produce the /ɾ/ phoneme as [ʐ]; and (2) Ibarra and L2 Spanish speakers overwhelmingly produce the /ʎ/ phoneme as [ʒ] (as attested in Haboud & de la Vega, 2008), even under the formal conditions by which the data were collected. For ML, results show that Spanish-origin /ɾ/ and /ʎ/ assimilate to [ʐ] and [ʒ] (as also revealed for Spanish borrowings in Quichua), suggesting that these sounds function more like the Quichua phonemes /ʐ/ and /ʒ/, respectively (i.e., instances of Spanish-like liquids are almost non-existent). For Spanish, popular theories often claim that fricativization of the liquids /ɾ/ and /ʎ/ is the direct result of Quichua influence (detailed in, but not supported by, Gómez, 2003) since these sounds appear to be more ‘prototypical’ or ‘robust’ in native, northern Quichua words; however, previous studies have dispelled such hypotheses (e.g., Adelaar & Muysken, 2004; Gómez, 2003; Toscano-Mateus, 1953) in favor of linguistic convergence, which is most likely responsible for the parallel development of [ʐ] and [ʒ] in both northern Spanish dialects and northern Quichua dialects. This is based on the fact that these sounds are not attested in more conservative dialects of both languages. If the usage of [ʐ] and [ʒ] is indeed a case of linguistic convergence, then the distribution patterns from this study might
suggest that modern-day northern Quichua dialects may preserve these sounds to a greater extent than northern Spanish dialects and, by proxy, may also have an influence on the maintenance of these sounds in northern Spanish. This observation comes from the fact that Spanish dialects with greater contact with Quichua show increased instances of fricativization, while those with less contact show greater variation between more ‘standard’ liquid variants and fricative variants; for example, L2 speakers of Spanish (i.e., the dialect with the greatest Quichua influence) produced [z] more frequently than speakers of L1 Rural Spanish (i.e., the dialect with the second highest degree of contact with Quichua), while L1 Rural speakers produced [z] more often than urban varieties of Spanish (i.e., the dialects with the least amount of contact with Quichua), with the highest number of trills or trill-like variants. The production of the <ll> grapheme shares a similar trend, apart from the fact that speakers of Ibarra Spanish overwhelmingly produced [ʒ] over [ʎ]. Based on this evidence, it appears that the greater Quichua’s influence on Spanish, the more often liquids undergo fricativization.

Contrarily, it may also be hypothesized that if the use of [z] and [ʒ] developed in parallel in this region, Spanish dialects with less contact with Quichua might be in the midst of reverting back to the more ‘standard’ pronunciations [r] and [ʎ], respectively. Alternatively, the parallel development may not have been uniform in that Spanish speakers in the north with less contact with Quichua speakers may have only partially adopted the sound changes (i.e., the use of both liquids and fricatives interchangeably), whereas Quichua speakers fully adopted it.

The hypothesis that Quichua is maintaining or influencing the synchronic use of fricatives in northern Spanish dialects is also supported by the unidirectionality of the sound change (i.e., Spanish speakers show increased fricative usage when Quichua has more influence on their dialect), as the reverse influence (i.e., Spanish liquids making their way into Quichua) is minimal in the data; only a single approximant trill token, out of all 356 native Quichua and Spanish borrowings, is attested.

For ML, productions of [z] and [ʒ] reveal the robustness of these sounds in Quichua. Even with the high lexical influence and adoption of other Spanish sounds, ML speakers unequivocally produce Spanish-origin /ɾ/ as [z], and /ʎ/ as [ʒ]. It should be noted that ML phonology is quite conservative in many regards, and maintains Spanish sounds that are no longer used in Spanish dialects of the region, such as word-initial /ʃ/ in hacha [ˈxaʃa] ‘axe’ and habas [ˈxaβas] ‘fava beans’ (Muysken, 1997, p. 372; Stewart, 2011, p. 85). While it is difficult to ascertain whether these sounds came directly from Spanish borrowings from 100 years ago, when ML formed, or have assimilated to Quichua phonology, they make up a set of a few sounds that do not show at least some degree of influence from ‘standard’ Spanish phonology.
5.2 Taps

While the graphemes \(<-r/-r->\) were most often produced as taps, there was a substantial amount of variation, especially in word-final position. Trends in the data show that Spanish speakers most commonly realized taps as trills, tap-fricative clusters, and ‘perceived-trills.’ Contrarily, speakers of Quichua and ML tended to be more conservative in their production, although taps produced as fricatives and \([ɾʂ]\) clusters were not unusual (more so in Quichua than ML). Such variation in Spanish might simply be attributed to cross-linguistic differences in tap production (i.e., non-contact induced change) or as a marker of social status. The latter can be seen in the number of trill realizations of the tap in Quito and L1 Rural Spanish, where native speaker opinions suggested an exaggerated pronunciation in an attempt to sound ‘more refined.’

5.3 Yeísmo or lleísmo?

In all the Spanish dialects under investigation, there is evidence that speakers produce consistent differences between /ʎ/ and /j/, even though there is a great deal of variation in the former. The data suggest that even when /ʎ/ does not become [ʒ], speakers of these dialects/idiolects can still be categorized as lleísta speakers. One example of a variant that appears to be gaining ground in the L1 Spanish dialects is the voiced palatal stop (i.e., [ɟ]). Impressionistically, this variant appears to be more common with younger women (shown to be innovators of linguistic change; see Dale, 1976; Labov, 1990; López Rúa, 2006; Powell, 1979; Springer & Deutsch, 1989; Yang, 2001; inter alia), suggesting that some degree of innovation could be taking place. For speakers that use [ʒ] for [ʎ], clear production differences between [ʒ] and [j] exist, suggesting that they also fall into the category of lleísta speakers (or more apt, zeísta speakers). Trends in the Quichua and ML data are more straightforward, revealing clear categorical differences between /ʒ/ and /j/, where /j/ was only produced as [j], and no [j] variants of /ʒ/ were identified.

6. Conclusions

The goal of this study was to identify phonetic variation in the phonemes /r, r, ʎ, j/ across four dialects of Spanish and ML, as well as in the phonemes /ʐ, ʒ/ in Quichua. Based on the distribution of these variants, Spanish dialects with greater Quichua influence show greater use of [ʐ] for /r/ and [ʒ] for /ʎ/, suggesting that Quichua may play a role in maintaining these allophonic variations. Trends in the ML data are nearly identical to those of Quichua, suggesting that, even with its heavy influence from Spanish, Spanish-origin /r/ and /ʎ/ assimilate to Quichua [ʐ] and [ʒ],
respectively. For all language varieties, there is a high degree of allophonic variation in the tap phoneme /ɾ/, and little variation in the palatal approximant /j/.

While it was beyond the scope of this preliminary, descriptive survey, future studies might want to investigate liquid-fricative variation in this region using quantitative analyses of both production and perception data, which would involve various demographic and socioeconomic factors, in addition to phonetic correlates. Such analyses would enrich the descriptive observations made herein, while also uncovering trends not identified in this analysis.

References

Chapter 5. A preliminary, descriptive survey of rhotic

Appendix A

Reading list – Imbabura Spanish

Hasta mañana.

Estoy cansado.

La vela se está quemando.

Cada persona aquí habla tres idiomas.

La tienda está al frente.

El mercado está atrás.

Mi hija está afuera de la escuela.

Mi familia está dentro de la casa.

Antes de cocinar yo me lavo las manos.

Después de la fiesta yo fui a la casa.

Tengo mucho trabajo que hacer.

¿Usted puede hablar más despacio?

Estoy demasiado cansado.

Estoy comiendo.

Yo saldré corriendo para recibirte cuando vos llegues.

Mi hermana está comprando en la tienda.

Él es mi amigo.

Estas personas se van a la ciudad.

¿Qué estás viendo?

¿Dónde está tu esposa?

¿Cómo se llama usted?

¡Mañana voy a dormir hasta tarde, no me despiertes!

Ayer me fui a Quito.

Reading List – Media Lengua

Translation Sample

Mañanacaman.

Cansashcamari cani.

Micha japirishca.

Aquipi genticuna tres idiomata hablanchi.

Tiendaca cay ladopi.

Ese mercadoca aquiwashada ladopimi.

Mio hijaca escuelamanta salishcamari.

Mio familiaca casacupimi.

Auno coznapatamma manota lavani.

Yoca fieshtamanta vinini.

Yoca aro tabajotami tinini.

Vosca mas despacioLLa hablanguichu?

Yoca cansashcamari cani.

Yoca cominjunimi.

Yoca corrishpa salisha oste vinipica.

Mio hermanaca tendapimi comprajun.

Elca miopa amigomi.

Ese gentecuna pueblomanmi inajun.

Quetata vijungui.

Tuyo mujercia ondepitay?

Vosteca que nombreta canguii?

Mañanaca totacammanmi dormigrini. No recordachiwanguichu!

Ayerca quitoammanmi ircani.
Las personas siempre vienen aquí.
Yo nunca hago mis deberes.
Nuestro bosque está protegido.
Yo quiero dormir.
Después de haber comido me fui a la casa.
En la noche yo veo la tele antes de dormir.

¡Escribiste mal, bórralo!
Mi terreno está muy bonito.
Casi llegamos a la ciudad.
Mi pie se hincho después de caerme.

¿Escribiste mal, bórralo!
Mi terreno está muy bonito.
Casi llegamos a la ciudad.
Mi pie se hincho después de caerme.

¿Cuándo vamos a salir?
¿Cómo estás?
Había algunas personas en la reunión.
Ellos quieren jugar.

Genticunaca aquimanmi vinin.
Yoca debercunatac no azinchu.
Nucanchi bosquica cuidashcami.
Yoca dorminatami kirini.
Comishca jipaca casamanmi ircani.

El está estudiando.

Genticunaca aquimanmi vinin.
Yoca debercunatac no azinchu.
Nucanchi bosquica cuidashcami.
Yoca dorminatami kirini.
Comishca jipaca casamanmi ircani.

El está estudiando.
¿Por qué olvidaste tu cuaderno?
Son las estrellas que brillan en la noche.
Mañana la luna estará llena.
Los pulmones toman aire.
Tomar mucho alcohol es malo para el hígado.
Los invernaderos usan mucho plástico.

Hay muchos patos en el Lago San Pablo.
Usamos el caparazón de los armadillos para hacer charangos.
Los burros se llevan las cargas, son muy fuertes.
El lunes me toca ir a la ciudad.
Las plumas del pavo real son lindas.
En Julio los niños tienen vacaciones en la escuela.
La ciudad de Otavalo queda a quince minutos de Pijal.
Necesito cinco voluntarios que me ayuden.

¿Te gusta el pescado frito?
Los gusanos son buenos para las chagras.
¿Cuál es tu fruta favorita?
Los murciélagos chupan sangre.
Él estaba escupiendo las pepas.
Tienes que soplar más duro.
Ustedes salieron temprano hoy de mañana.
El niño malcriado me mordió.
Nosotros comimos ayer juntos.
El trabajará mucho el próximo mes.

Tenemos que coger un bus para ir a Otavalo.

Ayer cayó al suelo riendo.
Las personas que hablan mucho saben poco.

La Pachamama es la dueña de la tierra.
¿Dónde está el dibujo que hiciste en la escuela?
No he visto un cóndor por aquí en muchos años.

Ese reloj está dañado.
¡Estás cansado, pues descansa!
Cuando el venga, me avisas.
El árbol es más grande que el maíz.
Aquí está el palo que estabas buscando.
Tenemos que ir allá.

Porqueta olvidarcangui cuadernota?
Estrellacunaca brillanajunmi denoche.
Mañanaca lunaca llenomi canga.
Pulomoncunaca airetami recibin.
Arto tragota tomayca malo higadocunapa.
Invernaderocuna mucho plasticotami usan.
Arto patocunami lagunapycsqi abin.
Nosotrosca armadillotaca cojinchipi charangota azingapa.
Borrnocunaca cargatac artotami liban.
Lunestaca pueblomanami ina cani.
Pavo realpumaracunaca lindomi.
Juliopica wawacunaca vacacntompi tinin.
Otalomanancia quinze minutospimipi llegarin.
Cinco genticuna voluntariotami minisitini ayudachun.
Pescado frituta kiringuichu?
Gusanocunaca chagrapui buenochu.
Que frutatat cominata kiringui?
Morcielagocunaca sangre tami chupan.
Elcunaca pipata botajurcami.
Mas fuerzawan soplana canguin.
Ustedcunaca tempranomi salircanguichi.
Niñu malcriadomi mordwarca.
Nosotrosca ayermi comercanchi igual.
Elcunaca proximo mesca bastantetami trabaqna.
Carrotami cogina canchi otaloman ingapa.
Ayerca cayercanisi suelop.
Artuta gentecuna hablancunataca no sabinchu.
Pachamamaca dueñomi nuestro tierrapa.
Ondepita dibujuca escuealapi azishacapa?
Condortaca yoca no vishcanichu tanto tiempota.
Ese relojuca dañashcam.
Cansashcunaca cashpaca descansay.
El vinikpica avisawangui.
El eucaliptota mas grandimi.
Aquipimi paloca buscajrcangui.
Allimannmi ina canchi.

Jesse Stewart
Appendix B

Reading list – Imbabura Spanish
Hasta mañana.
Estoy cansado.
La vela se está quemando.
Cada persona aquí habla tres idiomas.
La tienda está al frente.
El mercado está atrás.
Mi hija está afuera de la escuela.
Mi familia está dentro de la casa.
Antes de cocinar yo me lavo las manos.
Después de la fiesta yo fui a la casa.
Tengo mucho trabajo que hacer.
¿Usted puede hablar más despacio?
Estoy demasiado cansado.
Estoy comiendo.
Yo saldré corriendo para recibirte cuando vos llegues.
Mi hermana está comprando en la tienda.
Él es mi amigo.
Estas personas se van a la ciudad.
¿Qué estás viendo?
¿Cómo se llama usted?
¿Mañana voy a dormir hasta tarde, no me despiertes!
Ayer me fui a Quito.
Las personas siempre vienen aquí.
Yo nunca hago mis deberes.
Nuestro bosque está protegido.
Yo quiero dormir.
Después de haber comido me fui a la casa.
En la noche yo veo la tele antes de dormir.

¡Escribiste mal, bórralo!
Mi terreno está muy bonito.
Casi llegamos a la ciudad.
Mi pie se hinchó después de caerme.
Arriba en la montaña Cayo nieve.
El niño hizo una pregunta.
Él quiere que tú le enseñes a leer.
Si sales de aquí vas a tener frío.
Mi vecina me saluda todos los días.

Reading List – Quichua Translation Sample
Kayakaman.
Shayhushkami kani.
Esperma rupahunmi.
Kaypi ūnakanchika ishkay shimitami rimanchi.
Tienda kay ūka frentepillami.
Mercado kay washa ladupimi.
Nuka hihaka escuelamanda llugshishkami.
Nuka familia tukuyllami wasipi kanchi.
Nukaka nara yanushpallatamaki mayllani.
Fiesta tulurigpikawasimanmi rini.
Nukaka achika trahutatami charini.
Aliillagu rimay ushangichu?
Yapata shayhushkami kani.
Nukaka mikuhunumi.
Nukaka kalpahushkami llugshini kangu chayamunauraska.
Nuka ūnānaka tiendapi randihunmi.
Chaymi ūkaka amigu.
Kay hintikunaka villamanmi rinahun.
Imata rikuhungi?
Maypiti kamba warmika.
Imashutita kangi?
Kayaka chishikamanmi puñusha, ama rigchachingichu.
Kaynaka quytutami rirkani.
Chay hintikunaka cada ratumi kayman shamun.
Nukaka na ruranichu nunca.
Nuka busquyka na rupachinchu.
Kuataka puñunayahunmi.
Mikushka hipaka wasimanmi rirkani.
Nukaka tutaka teletami rikuni nara puñushpallata.
Chay escribishkaka nalichu burray.
Nuka alpaka huylagumi.
Nami chayanahunchi villaman.
Urmashka hipaka ūnaka chakika pungirkami.
Hahu ñukupi fuyu urmarkami.
Chay wawaka shug tapuytami rurarka.
Chayka kangutaka yachachichunmi munan.
Kaymanda llugshishpaka chiriqichimiri.
Vicinaka ūnakawani tukuy punillami saludan.
Cuando tú dibujas tienes mucha concentración.

Ella va a hacer la sopa.

La máquina se paró.

Yo te seguí gritando cuando saliste de mi casa.

Ustedes no han leído este libro.

Yo hago una investigación.

Los turistas no pueden subir la montaña.

Los pintores pintaron la casa.

Tengo que limpiar mi cuarto.

Ayer fuimos a comer a Otavalo.

¿Cómo estás?

Había algunas personas en la reunión.

Chayka supatami yanugrihun.

Maquyna shayarkami.

Dibuhashpaka ñukaka chaytaka yuyayllami kani.

Yo quieras que tu escribas una carta.

Tenemos que evaluar el trabajo.

Ella cortará la comida, pero no con un cuchillo.

El está estudiando.

¿Por qué olvidaste tu cuaderno?

¿Cuándo vamos a salir?

Son las estrellas que brillan en la noche.

Hay muchos patos en el Lago San Pablo.

Los burros se llevan las cargas, son muy fuertes.

El lunes te toca ir a la ciudad.

Voy a bañar al niño que se cayó en el lodo.

¿Cómo estás?

La culebra me mordió el pie.

Los pulmones toman aire.

Voy a bañar al niño que se cayó en el lodo.

¿Cuándo vamos a salir?

¿Cómo estás?

Tengo que limpiar mi cuarto.

Ayer fuimos a comer a Otavalo.

¿Cómo estás?

Había algunas personas en la reunión.

Los pulmones toman aire.

Chayka supatami yanugrihun.

Maquyna shayarkami.

Dibuhashpaka ñukaka chaytaka yuyayllami kani.

Yo quieras que tu escribas una carta.

Tenemos que evaluar el trabajo.

Ella cortará la comida, pero no con un cuchillo.

El está estudiando.

¿Por qué olvidaste tu cuaderno?

¿Cuándo vamos a salir?

Son las estrellas que brillan en la noche.

Hay muchos patos en el Lago San Pablo.

Los burros se llevan las cargas, son muy fuertes.

El lunes te toca ir a la ciudad.
Las plumas del pavo real son lindas.
En Julio los niños tienen vacaciones en la escuela.
La ciudad de Otavalo queda a quince minutos de Pijal.
Necesito cinco voluntarios que me ayuden. ¿Te gusta el pescado frito?
Los gusanos son buenos para las chagras. ¿Cuál es tu fruta favorita?
Los murciélagos chupan sangre. Él estaba escupiendo las pepas.
Tienes que soplar más duro.
Ustedes salieron temprano hoy de mañana.
El niño malcriado me mordió.
Nosotros comimos ayer juntos.
El trabajará mucho el próximo mes.
Tenemos que coger un bus para ir a Otavalo.

Ayer cayó al suelo riendo.
Las personas que hablan mucho saben poco.
La Pachamama es la dueña de la tierra.
¿Dónde está el dibujo que hiciste en la escuela?
No he visto un cóndor por aquí en muchos años.
Ese reloj está dañado. ¿Estás cansado, pues descansa!
Cuando el venga, me avises.
El árbol es más grande que el maíz.
Aqui está el palo que estabas buscando. Tenemos que ir allá.

Appendix C

<table>
<thead>
<tr>
<th>Spanish word list – Quito, L1, L2</th>
<th>ML phrase list</th>
<th>Quichua phrase list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deberes</td>
<td>Deberesta no gustanichu.</td>
<td>Deberesta na munanichu.</td>
</tr>
<tr>
<td>Dar</td>
<td>Quita kiringui?</td>
<td>Deportita alimi kan.</td>
</tr>
<tr>
<td>Dolor</td>
<td>Deportika buenom kan.</td>
<td>Domingotami rinchi.</td>
</tr>
<tr>
<td>Deporte</td>
<td>Comigrini.</td>
<td>Turistaka urmarka.</td>
</tr>
<tr>
<td>Ver</td>
<td>Turistaka caerka.</td>
<td>Decisionta na alichu rurangi.</td>
</tr>
<tr>
<td>Garaje</td>
<td>Terminajunchi.</td>
<td>Dicimbripimi ringi.</td>
</tr>
</tbody>
</table>
Comer
Tomar
Terminar
Diciembre
Tener
Cortar
Votar
Computadora
Dormir
Quedar
Terreno
Comprar
Pintar
Terminal
Pintar
Gobierno
Parques
Grande
Besar
Gordo
Buscar
Griego
Perro
Cultura
Colibri
Pollo
Golpear
Gustar
Planchar
Terno
Demorar
Perder
Parqueadero
Terremoto
Barato
Color
Burro
Ganar
Culebra
Quitar
Poner
Casar

Proyectoka buenomi.
Diciembrripimi ingui.
Cortanguichichu?
Documentokara largomi kan.
Computadorakara dañashkami.
Dorminata no kirinichu.
Dedoka inchawarka.
Terrenoka grandimi.
Comprarkanguichu?
Pintorka mal trabajashka.
Terminalka ondepita kan?
Gobierokara buenomi kan.
Parqueka abinmi.
Grande grandemi.
Papelka acabarkami.
Gordoka no andajunchu.
Gringoka perdishka.
Perrorukuka bravomi kan.
Culturatamteninchichi.
Colibrika bonitomi kan.
Pinotchamikerini.
Pollokara escapajun.
Princesakahonitamichi.
Planchanatakaran kirinichu.
Ternokarayaromi.
Demorashka.
Tiendamantamvinirkanimi.
Perdinata no kirinichu!
Gafaskunakaperdishka.
Parqueaderokarllenomi kan.
Pantalonakarorotomi.
Bonitamiesewarmika.
Terremotokarabinimi!
Baratomi kan!
Bebekala llorajurka.
Cañawaimapegawarka.
Color azulta gustaninmi.
Burroka fuerterimi.
Ganarkani.
Culebrakra mordiawarka.
Tetami tomanata kirinimi.
Casaranajunchi.

Bosqueka rupajun.
Goltami ruranchi!
Computadorakara waklishkami.
Televisionturikujuni.
Dedokarapungawarka.
Terrenokajutunmi.
Pinturukukanalichu llankashka.
Terminalkamaypita kan?
Gobierokara alimi kan.
Parquekayarin.
Papelkaturini.
Gordokaranpurjunchu.
Costakaraku karumi.
Princesakasumakimi.
Ternokayarani.
Dimurashka.
Tiendamantamishamurkanimi.
Butunka llukishkami.
Parqueaderokajuntamkan.
Terremotokarayarin!
Baratomi kan!
Problematamcharini.
Cañawamimakawarka.
Tiempokarancharinichu.
Color azultamunani.
Burroka sinchimi.
Ganarkani.
Calibrakani.
Duraznokamishki mishkimi.
Gorrokaverdemikan.
Cargatalhashkami.
Chapter 5. A preliminary, descriptive survey of rhotic

Gorro
Carga
Carro
Lledo
Yema
Error
Cabuya
Río
Llama
Yegua
Ron
Lluvia
Ayudar
Yerno
Rayo
Llanta
Ensayo
Yoga
Repollo
Llamar
Allá
Anillo
Ballena
Barra
Fallo
Yo
Hierro
Gallo
Apoyar
Boya
Rábanos
Arroz

Bancotami robashka.
Gorroka verdemi kan.
Guanteskunaka rojomi kan.
Cargata pesashkami.